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Instructions to candidates 
 

• Write your name in the box above. 

• Do not open this examination paper until instructed to do so. 

• A graphic display calculator is required for this paper. 

• Unless otherwise stated in the question, all numerical answers should be given exactly or  

      correct to three significant figures. 

• A clean copy of the mathematics: analysis and approaches formula booklet is required  

      for this paper. 

• The maximum mark for this examination paper is [55 marks]. 
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Answer all questions on separate answer paper / booklet. Please start each question on a new page. 
Full marks are not necessarily awarded for a correct answer with no working. Answers must be 
supported by working and/or explanations. Solutions found from a graphic display calculator should be 
supported by suitable working. For example, if graphs are used to find a solution, you should sketch 
these as part of your answer. Where an answer is incorrect, some marks may be given for a correct 
method, provided this is shown by written working. You are therefore advised to show all working. 

 
 

1.        [Maximum mark: 29] 
 

The probability density function  f  is defined as follows where a . 
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(a) Sketch the graph of ( )y f x= .         [2] 

 

(b) Find ( )P πX  .           [2] 

 

(c) Show that 
2

1

π
a = .          [3] 

 

(d) Write down the median of X.           [1] 
 

(e) Show that the mean of X is 
13π

12
.        [6] 

 

(f) Calculate the variance of X.          [3] 
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(h) Given that 
π 3π

2 2
X  , find the probability that π 2πX  .    [4] 

 

(i) Consider the function g defined as follows where c . 
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  Show that there is no value of c such that g is a probability density function.   [6] 
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2.        [Maximum mark: 26] 

 

Points A, B and T lie on a line on an indoor  
 

soccer field. The goal,  AB , is 2 metres 

wide. A player situated at point P kicks a ball  
 

at the goal.  PT  is perpendicular to ( )AB  

and is 6 metres from a parallel line through  
 

the centre of  AB . Let PT be x metres and 

let APB =  measured in degrees. Assume  
 

that the ball travels along the floor. 

 

(a) Find the value of   when 10x = .  
 

(b) Applying an appropriate trigonometric identity, show that 
2

2
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35

x

x
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+
.     [3] 

 

The maximum value for   occurs when tan  is a maximum. 
 

(c) (i) Find ( )
d

tan
dx

 . 

 

 (ii) Hence, find the value of   such that ( )
d

tan 0
dx

 = . 

 

 (iii) Find ( )
2

2

d
tan

dx
  and hence show that the value of   never exceeds 10 .  [10] 

 

(d) Find the set of values for x for which 7   .       [3] 

 

Consider that, instead of being 6 metres, the distance from  PT  to the parallel line through  

the centre of  AB is y metres. 

 

(e) (i)     Show that 
2 2

2
tan

1

x

x y
 =

+ −
.       [3] 

 

 (ii)    Show that 2 1x y= −  when   is  

          a maximum.      [4] 

        

 

 

 

 


